Template:Physical constants
This template provides easy inclusion of the latest CODATA recommended values of physical constants in articles. It gives the most recent values published, and will be updated when newer values become available, which is typically every four years.
The values have been updated to the CODATA 2018 values. This includes the 2019 redefinition of SI base units, which made the values of several constants exact (e.g. e), whereas some previously exactly defined constants acquired an uncertainty (e.g. μ0).
Usage
Arguments
symbol
- If set to
yes
, the value is preceded by the symbol of the constant, followed by ≈ or = depending on whether or notround
is set. round
- If omitted, the value is shown along with its standard uncertainty. If set to an integer n, the value is rounded to the first n digits after the decimal point (retaining trailing zeros).
unit
- If set to
no
, the unit of measurement is not shown. ref
- If set to
no
, no reference is given. If set toonly
, only the reference is given. after
- Text (e.g. punctuation) to be shown after the constant before the reference.
runc
- If set to
yes
, this will provide only the relative standard uncertainty of the value and its reference.
Available constants
Code | Constant | Value | Relative standard uncertainty |
---|---|---|---|
a0
|
Bohr radius | a0 = 5.29177210903(80)×10−11 m | ur(a0) = 1.5×10−10[1] |
alpha
|
fine-structure constant | α = 7.2973525693(11)×10−3 | ur(α) = 1.5×10−10[2] |
A90
|
conventional ampere | A90 = 1.00000008887... A | ur(A90) = 0[3] |
atm
|
standard atmosphere | atm = 101325 Pa | ur(atm) = 0[4] |
bwien
|
Wien wavelength displacement law constant | b = 2.897771955...×10−3 m⋅K | ur(b) = 0[5] |
bwien'
|
Wien frequency displacement law constant | b′ = 5.878925757...×1010 Hz⋅K−1 | ur(b′) = 0[6] |
c
|
speed of light | c = 299792458 m/s | ur(c) = 0[7] |
c1
|
first radiation constant | c1 = 3.741771852...×10−16 W⋅m2 | ur(c1) = 0[8] |
c1L
|
first radiation constant for spectral radiance | c1L = 1.191042972...×10−16 W⋅m2⋅sr−1 | ur(c1L) = 0[9] |
c2
|
second radiation constant | c2 = 1.438776877...×10−2 m⋅K | ur(c2) = 0[10] |
C90
|
conventional coulomb | C90 = 1.00000008887... C | ur(C90) = 0[11] |
DnuCs
|
hyperfine structure transition frequency of caesium-133 | Δν(133Cs)hfs = 9192631770 Hz | ur(Δν(133Cs)hfs) = 0[12] |
e
|
elementary charge | e = 1.602176634×10−19 C | ur(e) = 0[13] |
Eh
|
Hartree energy | Eh = 4.3597447222071(85)×10−18 J | ur(Eh) = 1.9×10−12[14] |
EheV
|
Hartree energy in eV | Eh = 27.211386245988(53) eV | ur(Eh) = 1.9×10−12[15] |
eps0
|
vacuum electric permittivity | ε0 = 8.8541878128(13)×10−12 F⋅m−1 | ur(ε0) = 1.5×10−10[16] |
eV
|
electronvolt | eV = 1.602176634×10−19 J | ur(eV) = 0[17] |
F
|
Faraday constant | F = 96485.33212... C⋅mol−1 | ur(F) = 0[18] |
F90
|
conventional farad | F90 = 0.99999998220... F | ur(F90) = 0[19] |
G
|
gravitational constant | G = 6.67430(15)×10−11 m3⋅kg−1⋅s−2 | ur(G) = 2.2×10−5[20] |
G0
|
conductance quantum | G0 = 7.748091729...×10−5 S | ur(G0) = 0[21] |
g0
|
standard acceleration of gravity | g0 = 9.80665 m⋅s−2 | ur(g0) = 0[22] |
ge
|
electron g-factor | ge− = −2.00231930436256(35) | ur(ge−) = 1.7×10−13[23] |
GF/hbarc3
|
Fermi coupling constant | GF/(ħc)3 = 1.1663787(6)×10−5 GeV−2 | ur(GF/(ħc)3) = 5.1×10−7[24] |
gmu
|
muon g-factor | gμ− = −2.0023318418(13) | ur(gμ−) = 6.3×10−10[25] |
gp
|
proton g-factor | gp = 5.5856946893(16) | ur(gp) = 2.9×10−10[26] |
h
|
Planck constant | h = 6.62607015×10−34 J⋅s | ur(h) = 0[27] |
H90
|
conventional henry | H90 = 1.00000001779... H | ur(H90) = 0[28] |
hbar
|
reduced Planck constant | ħ = 1.054571817...×10−34 J⋅s | ur(ħ) = 0[29] |
h/2me
|
quantum of circulation | h/2me = 3.6369475516(11)×10−4 m2⋅s−1 | ur(h/2me) = 3.0×10−10[30] |
invalpha
|
inverse fine-structure constant | 1/α = 137.035999084(21) | ur(1/α) = 1.5×10−10[31] |
invG0
|
inverse conductance quantum | G0−1 = 12906.40372... Ω | ur(G0−1) = 0[32] |
k
|
Boltzmann constant | k = 1.380649×10−23 J⋅K−1 | ur(k) = 0[33] |
KJ
|
Josephson constant | KJ = 483597.8484...×109 Hz⋅V−1 | ur(KJ) = 0[34] |
KJ90
|
conventional value of Josephson constant | KJ-90 = 483597.9×109 Hz⋅V−1 | ur(KJ-90) = 0[35] |
lP
|
Planck length | lP = 1.616255(18)×10−35 m | ur(lP) = 1.1×10−5[36] |
MC12
|
molar mass of carbon-12 | M(12C) = 11.9999999958(36)×10−3 kg⋅mol−1 | ur(M(12C)) = 3.0×10−10[37] |
me
|
electron mass | me = 9.1093837015(28)×10−31 kg | ur(me) = 3.0×10−10[38] |
meDa
|
electron mass in daltons | me = 5.48579909065(16)×10−4 Da | ur(me) = 2.9×10−11[39] |
mmu
|
muon mass | mμ = 1.883531627(42)×10−28 kg | ur(mμ) = 2.2×10−8[40] |
mn
|
neutron mass | mn = 1.67492749804(95)×10−27 kg | ur(mn) = 5.7×10−10[41] |
mnDa
|
neutron mass in daltons | mn = 1.00866491595(49) Da | ur(mn) = 4.8×10−10[42] |
mP
|
Planck mass | mP = 2.176435(24)×10−8 kg | ur(mP) = 1.1×10−5[43] |
mp
|
proton mass | mp = 1.67262192369(51)×10−27 kg | ur(mp) = 3.1×10−10[44] |
mpome
|
proton-to-electron mass ratio | mp/me = 1836.15267343(11) | ur(mp/me) = 6.0×10−11[45] |
mtau
|
tau mass | mτ = 3.16754(21)×10−27 kg | ur(mτ) = 6.8×10−5[46] |
Mu
|
molar mass constant | Mu = 0.99999999965(30)×10−3 kg⋅mol−1 | ur(Mu) = 3.0×10−10[47] |
mu
|
atomic mass constant | mu = 1.66053906660(50)×10−27 kg | ur(mu) = 3.0×10−10[48] |
muc2
|
atomic mass constant energy equivalent | muc2 = 1.49241808560(45)×10−10 J | ur(muc2) = 3.0×10−10[49] |
mueV
|
atomic mass constant energy equivalent in MeV | muc2 = 931.49410242(28) MeV | ur(muc2) = 3.0×10−10[50] |
mu0
|
vacuum magnetic permeability | μ0 = 1.25663706212(19)×10−6 N⋅A−2 | ur(μ0) = 1.5×10−10[51] |
muB
|
Bohr magneton | μB = 9.2740100783(28)×10−24 J⋅T−1 | ur(μB) = 3.0×10−10[52] |
muN
|
nuclear magneton | μN = 5.0507837461(15)×10−27 J⋅T−1 | ur(μN) = 3.1×10−10[53] |
mW/mZ
|
W-to-Z mass ratio | mW/mZ = 0.88153(17) | ur(mW/mZ) = 1.9×10−4[54] |
NA
|
Avogadro constant | NA = 6.02214076×1023 mol−1 | ur(NA) = 0[55] |
NAh
|
molar Planck constant | NAh = 3.990312712...×10−10 J⋅Hz−1⋅mol−1 | ur(NAh) = 0[56] |
ohm90
|
conventional ohm | Ω90 = 1.00000001779... Ω | ur(Ω90) = 0[57] |
Phi0
|
magnetic flux quantum | Φ0 = 2.067833848...×10−15 Wb | ur(Φ0) = 0[58] |
R
|
molar gas constant | R = 8.314462618... J⋅mol−1⋅K−1 | ur(R) = 0[59] |
re
|
classical electron radius | re = 2.8179403262(13)×10−15 m | ur(re) = 4.5×10−10[60] |
Rinf
|
Rydberg constant | R∞ = 10973731.568160(21) m−1 | ur(R∞) = 1.9×10−12[61] |
RK
|
von Klitzing constant | RK = 25812.80745... Ω | ur(RK) = 0[62] |
RK90
|
conventional value of von Klitzing constant | RK-90 = 25812.807 Ω | ur(RK-90) = 0[63] |
sigma
|
Stefan–Boltzmann constant | σ = 5.670374419...×10−8 W⋅m−2⋅K−4 | ur(σ) = 0[64] |
sigmae
|
Thomson cross section | σe = 6.6524587321(60)×10−29 m2 | ur(σe) = 9.1×10−10[65] |
TP
|
Planck temperature | TP = 1.416785(16)×1032 K | ur(TP) = 1.1×10−5[66] |
tP
|
Planck time | tP = 5.391247(60)×10−44 s | ur(tP) = 1.1×10−5[67] |
V90
|
conventional volt | V90 = 1.00000010666... V | ur(V90) = 0[68] |
VmSi
|
molar volume of silicon | Vm(Si) = 1.205883199(60)×10−5 m3⋅mol−1 | ur(Vm(Si)) = 4.9×10−8[69] |
W90
|
conventional watt | W90 = 1.00000019553... W | ur(W90) = 0[70] |
Z0
|
characteristic impedance of vacuum | Z0 = 376.730313668(57) Ω | ur(Z0) = 1.5×10−10[71] |
Examples
{{Physical constants|c|unit=no|after= [[metre per second|metres per second]].}}
- 299792458 metres per second.[7]
{{Physical constants|mu0|symbol=yes}}
- μ0 = 1.25663706212(19)×10−6 N⋅A−2[51]
{{Physical constants|G|symbol=yes}}
- G = 6.67430(15)×10−11 m3⋅kg−1⋅s−2[20]
{{Physical constants|hbar|round=2|symbol=yes}}
- ħ ≈ 1.05×10−34 J⋅s[29]
The relative standard uncertainty of ''m''<sub>u</sub> is {{Physical constants|mu|runc=yes|after=.}}
- The relative standard uncertainty of mu is 3.0×10−10.[48]
For the electron mass, {{Physical constants|me|runc=yes|symbol=yes|ref=no}}.
- For the electron mass, ur(me) = 3.0×10−10.
NIST publishes the CODATA value of the [[elementary charge]].{{Physical constants|e|ref=only}}
- NIST publishes the CODATA value of the elementary charge.[13]
See also
{{CODATA2010}}
References
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ 7.0 7.1 Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ 13.0 13.1 Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ 20.0 20.1 Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ 29.0 29.1 Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ 48.0 48.1 Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ 51.0 51.1 Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).
- ↑ Lua error: bad argument #1 to "get" (not a valid title).